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REMARKS ON THE KORTEWEG-DE VRIES
EQUATION

BY

J. C. SAUT AND R. TEMAM

ABSTRACT

We show for the Korteweg-de Vries equation an existence uniqueness theorem
in Sobolev spaces of arbitrary fractional order s = 2, provided the initial data is
given in the same space.

Introduction

Our aim is to present a remark on the existence and uniqueness of solutions of
two initial value problems associated with the Korteweg—de Vries (K. d. V.)
equation (see for instance [8]): the Cauchy problem and the initial value problem
with periodic boundary conditions, i.e., (0.1), (0.2} or (0.2), (0.3):

3
0.1) %?+uj—g+a%£=0, XER t>0 (a#0),
k
0.2) gx—f(x,t)ﬁo,lxle +o, k=0,
0.2) O 1,y= L) k=0,
axk il axk 1] > » )
0.3) u(x,0)= uo(x).

The existence of solutions of these problems in Sobolev spaces of order 1 or 2
was established in [13] using a technique of parabolic regularization, the
equation (0.1) being approximated by

u, . . u. . d'u.

o +“‘ax ax3+8 =0 (g >0).

0.4)

The existence of solutions in all Sobolev spaces of integer order was established
in [15], [5} (using again the parabolic regularization) and in [4] using a different
technique.
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Our purpose here is to complete these results by showing the existence of
solutions in all Sobolev spaces of order s =2, where s is not necessarily an
integer. A non-optimal result of this type was previously established by the first
author in [9] and while this paper was completed a result similar to ours was
announced to the authors by J. Bona who uses a technique completely different
from ours ([3]).

Section 1 develops a technical inequality. Section 2.1 contains the main result
and Section 2.2 gives a few remarks.

1. An inequality

Let H*(R) denote the real Sobolev space of order s (s € R, s = 0), defined for
instance by Fourier transform

(1.1) {ue LA(R), [£[7a €L,

and which is a Hilbert space for the norm

12) bl = { [ a+lepytaerag

Similarly, let H*(C) denote the real Sobolev space of order s (s € R, s 2 0) on
the unit length circle C; among many other definitions, H*(C) may be
characterized as the space of real periodic functions

+%

(1.3) u(x)= 2 u, exp (imkx),
such that
+oo 1/2
(1.4) { > 1+ k) |2} <o,
k=-x

The left-hand side of (1.4) is a Hilbert norm for H*(C), denoted also | u |..
When no ambiguity is possible, and in order to treat simultaneously the two
initial value problems mentioned, H* will denote either H*(R) or H*(C).
The Fourier transform of u will be written & or fu. Let D = d/dx and let D*
represent the fractional derivative of order s:

(1.5)  D'u=3"(l§]3u), if u€ H(R),

+20

(1.6) D‘u =k;m w | k

‘exp imkx) if u € H(C), u of type (1.3).

The next lemma will be useful.
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Lemma 1.1. Letu,v belongto H*(R)or H’(C),s€ER,s>1,yER, y>1/2.
Then

(1.7 | D*(uv)— uD*v

b= v o+ fulhlo i

ReEmMark 1.1.

i) The inequality (1.7) is valid in higher dimensions, u,v € H*(R") or
H*(C™), provided y > n/2 (same proof).

ii) Inequality (1.7) is rather easy using Leibnitz’ formula, when s is an integer.
Similar “fractional type Leibnitz formulas™ are extensively used in [1].

ProoF orF LEmMMA 1.1.
1/ We start with the case u,v € H*(R). We have

S A~
D*(uv)(§)= |&] i (€)

- [Tierae-erserae

and

D)= [ - et

The left-hand side of (1.7) is the L? norm of Y = D*(uv)— uD’v, or using
Parseval’s formula the L? norm of Y,

1= [ (er-1enae- e,

It is easy to see that

el —1€T|sc&)(E-&T +IEE-€1)
where c(s) is a constant depending only on s; whence

Y(€)| = c(s)(Yi(€) + Ya(§))

(1.8) Y b= c(s)(I Yillo+ || Yalo)

where

V()= [ le-grlaE-ollse) e,

V)= [ le-ellgrag- o)) de.
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Both functions Y,, Y-, are convolution products, and using the convolution
inequalities we find

IY o= TEFT @) Mol e,

(1.9) IYillo= flu o]l 6 e
IYallo= 1€ 1B ol [€]8(E)] lerme,
NN
(1.10) IYzlo= v | grad @ [l -

It remains to estimate the norm || w |, 1) in terms of a Sobolev norm of w. One
has

[ re@ide= [ ra@las 1epr g

and by Schwarz’ inequality:

a.11) [Tiw@ide=cmiwl,

where

c'(y)= (f:o ﬁz)—y)uz < oo, if y>1/2.

The proof is now completed, using (1.8)-(1.11) and recalling that || Y ||,is equal
to the left-hand side of (1.7).

2/ In the case u, v € H*(C), the proof is a discrete version of the preceding
one.

We have

+oc

D’ (uv)—uD*v = mz ( > (Iml -1 J‘)ukv,)exp(Ziwmx)).

=-% \k+{=m

The left-hand side of (1.7) is equal to Z, with
)

[Tk +11F =[P = e (I k[ +]k

z2= 5 (|2 amr =1iruw

Since

)
we majorize Z by c(s)(Z:+ Z;), with
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P 2
zi= 3 (| S krluliull)

m=—oc k+l=m

. 2
zi= 3 (| 2 k1wl fal|)

m=-—wx +l=m

Now, the discrete convolution inequality gives us
+oo -+0o 2
zo=( 2 ik ul)( 2 tul)
k=—x 1=—
400 2 4+
z=( 3 1kl wl) (S 1P up)
i

k'=—c =—=

and we complete the proof as before, observing that
1/2 +0

Siwi=(Ea+0)" (S arerimr)”

IA

k=— k= =—=

3wz e@lwl,

and ¢'(y)< + if y > 1/2.

2. Existence results
2.1. The main result.

Tueorem 2.1.  Let s be any real number =2 and let u, be given in H*(R
(resp. H*(C)). The initial value problem (0.1), (0.2) (resp. (0.2)), (0.3) possesses
unique solution u, u € L=(0, T; H*(R)) (resp. L~(0, T; H* (C))) for any T >(
Moreover u is weakly continuous from [0, ) with values in H*(R) (resp. H’(C)).

Proor. The uniqueness which holds for any s>3/2 is simple and wa
established in [12]. The weak continuity follows from u € L™(0, T; H*) and
result of W. A. Strauss [10]. For the existence we use the parabolic regularizatio
as in [12]": we consider a parameter, ¢ >0, and a sequence u,. € H* N €"(R
with

U, —> Uy in H®, as £ 0.
For each ¢ >0 we consider the initial value problem

* The results of [13] which were established for the space periodic problem (0.1), (0.2'), (0.
extend without modification to the Cauchy problem (0.1), (0.2), (0.3). For compactness argument
we use the fact that the injection of H'(— M, + M) into L*(~ M, + M) is compact, VM.
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u du, d’u d‘u
£ "_t £+ - >
(2.1) Y +”‘ax+“3x3 £ 0 xER, t>0,
(2.2) u.(x,0) = ue, (x),

completed with the boundary condition (0.2) or (0.2).
It is well known that this problem possesses a unique smooth solution and it
was shown in [13] that

(2.3) u, remains bounded in L*(0, T; H?), as ¢ \ 0.

Moreover u, converges, as ¢ 0, to the solution of the K.d.V. initial value
problem (0.1), (0.2) (or (0.2)), (0.3).
Now, it remains to show that

2.4) u. remains bounded in L™(0, T; H"), as £ \ 0.

For that purpose, we apply the operator D* on both sides of (2.1) and we take
the L7 scalar product with D°u.*. Observing that D = §/dx and D* commute, we
obtain

LD, |+ | D*D*u i+ (D (w.Du,), D) =0

(2.5) %

(also (D°*D*u., D*u.)=0). Now we apply lemma 1.1 and observe that
[(u.DD*u,, D*u,)| = 3| (Du.D°u,, D*u,)| =3 Du, ||o=or:L=wn|| Dt |}
= c(fluol) | Duc [

(cf. [13)).
(26) I(DX(UFDL{F )’ Dsuf) = 2C(’Y’ 5)” U ”5' Ue fly+1 ” Dsur 0y
for some y >1/2. We can take y = 1, and majorize [ u. |, by ||u. |+ | D°u, |fo.

Using (2.3) we obtain then:

d s
7 1D |

s=c¢"||D’u. 3,

2.7) %

where ¢” is some constant depending only on u,, @, s and T. The result follows
then from Gronwall’s lemma. ]
2.2. Other remarks.

ProrosiTioNn 2.1 (A local existence-uniqueness result). Let s be a real
number 3/2 <5 <2, and let u, € H". Then there exists C, = C,(a,s), such that

* The scalar product in L*R) (or resp. L*([0,1D) is denoted (u, v).
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the initial value problem (0.1), (0.2) or (0.2'), (0.3) possesses a unique solution u
weakly continuous from [0, T,) into H*, T, = (C,[ uol)".

Proor. We proceed as before using the regularized problem (2.1), (2.2).

This time, since s < 2, instead of (2.3), we only infer from [13] that u, remains
in a bounded set of H' as £ 0. It remains to show that u remains in a bounded
set of L™(0, Ty; H*), where T, < T, (C, to be explicit).

We apply (2.6) with s = y + 1 and instead of (2.7) we obtain some inequality

14d
> q | D*u. |f= C, || D*u. |}
and by integration
s “Dsuns o
=<
“ D uf(t)”() =1- C*t "Dsu()e “0
The result follows. |

REMaRk 2.1. We do not know any global existence-uniqueness result in H
3/2< s <2. Beside Theorem 2.1 and Proposition 2.1, the known results ¢
existence of weak solutions are ([13]): existence of a global solution u ¢
L7, T; H")if uo € H'; uniqueness of a solution u € L0, T; H*), s >3/2. |

Under the assumptions of Theorem 2.1, let us now consider the mapping &,

(2.8) u(0)= uo+ u(t)

which is well defined from H* into itseif (s = 2). This mapping is easily seen to t
continuous and furthermore:

ProrosiTioN 2.2. o, is locally Hélder continuous with exponent 1/2, fro
H**'" into H*(s = 2). More precisely, there exists a continuous function ¢ fro
R. X R, into R., such that

(29) Tu(®)= v =@ (uo] s3]l 0o

Proor. It suffices to prove (2.9) for uo., Vo, u.(t), v.(t), with a functic
independent of e(¢ may depend on t). To do this, we set wo. = Up. — ¥
w. = U, — v,.; w, satisfies the equation:

172
Uo— Uol s+1/2)-

s+é

Q_‘gﬁ+ (93w5_*_88“w5=_ug_v&*w(91)e
ot Yo’ ax* “ax " ox

(2.10)

Applying D* to each member of (2.10) and taking the L*-scalar product w:
D*w,, we get
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i+ el D" w,

1/2(% | D*w. = —(D*(u.Dw,), D*w,)

(2.11)
—(D*(w.Dv,), D°w,).

Due to (1.7) the first term in the right-hand side of (2.11) is equal to
—(u.D**"'w,, D*w,), plus a remainder which is bounded by ((1.7) with y = 1):

c(L,s)(]

| Dw,

i+

2| Dw, |

)| D*w

U, ”s o

= c(s)u fllfw. |

By integration by parts, the term —(u.D*"'w,D’w.) is equal to
(1/2) (Du.D*w., D*w,), and this is bounded by

e flue D we [

Let us now majorize the second term in the right member of (2.11). Again,
because of (1.7), this term is equal to — (w.D*"'v,, D°w.) plus another expres-
sion bounded by

e, s)(fIwe s

Using Parseval’s formula, we see that the term (w.D**'v., D*w,) is equal to
(D**'?v,, D'*(w.D’w,)) and this term is bounded in absolute value by

2t [ we

v [|)[| Dw.

b = ¢i(s)| .

. 2| ve [l [l we

“ Ve ls+1/2 ” w.Dw, |12

By linear interpolation for the mapping g+~ w.g, w. € H', we obtain the
inequality:

Iwegll-=call wellill g lhzs V& € H';

| w.D*w.

12 = Cal| we [l ]| Dwe |

1/2-

Finally

[(w.D**'v.,, D*w,)

= ¢

Ue ||s+12 T l

v,

Ve s+1/2(| x+1/2)“ we

1.

Now, a more precise form of (2.3) or (2.4) is that

(2.12) Sup [lu.(0)] = o[ uoe |1)

u. (1)]

(2.13) sup | L= (| uo. ||s)
0=t=T
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where ¢, @i, - - -, are continuous which may depend on T but not on ¢ (similar
inequalities hold for v.). It is not difficult also to show that

2
2

(2.14) sup || we ()= @) uoe [z | voe [12) | Woe
O0=t=T

(see for instance [9]).
Using all these majorations of the right-hand side of (2.11), we find now

2
s

5= cs(|

e s+ |

U,

5)

o e izt [ 0e flovr) [ we

d s
zi—tHD w. W

1

= (,03(” Uo. ls+]/2 ” Voe Ix+1/2)(” Waoe [lo + ” w. "(2)‘+’ ” D w, ”g)

= (with (2.14))

= @ulll o vl voe ) woe o+ [ o 5+ [ D*we [3).

Using Gronwall’s lemma, we conclude that

|| DSWE(t)”g = <P5(|| u0||x+l/27 ” Uo|

o+ | D wo. |

0)-

e12) (I woe lo + || woe
The proof is now completed.

REMARK 2.2
i) We may, without any difficulty, consider a non-zero right-hand side in
0,1), fE L0, T; H*). The results are valid as well for the backward problem
— T <t <0 with initial condition at t = (0: we have just to replace ¢ by —e.
ii) It is easily checked with our results that the K. d. V. equation does not
possess any regularizing nor any deregularizing effect in the spaces H":

(2.15) If uo€ H*, (s =2) and uo & H***,Ve >0, then the same
is true for u(r), vi >0;

(2.16) 1If uo€ H**, & >0 sufficiently small (s >2) and u, & H°, then
the same is true for u(#), V¢ > 0.

For proving (2.15), observe that u(t) € H’, and if u(t)€ H***, € >0, then by
solving the backward K. d. V. equation (see Remark 2.2 (i)), we should obtain
uo = u(0)€ H***. The same proof for (2.16) holds.

ili) We note also that

217 If us € H', u,& H?, then the same is true for u(t), Vi >0.
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Indeed, if u(t,) € H*? for some t, > 0, then by solving the backward problem
we find a solution & € L~™(0, t,; H?) of the K.d.V. problem. The uniqueness
theorem implies & = u, i#(0) = u, € H?, in contradiction to the assumption.

iv) The same technique can be used for many other equations; generalized—
in various ways—K. d. V. equations ({2], [10]), Euler equations (see [14]),
first-order quasilinear hyperbolic equations. The technique applies also to the
Sine-Gordon equation, but in this case the result similar to Theorem 2.1 was
already obtained by J. C. Saut [9] using the non-linear interpolation [12].

REFERENCES

1. C. Bardos, U. Frisch, P. Penel, P. L. Sulem (to appear).

2. T. B. Benjamin, Lectures on Non-Linear Wave Motion: Lectures in Applied Mathematics, No.
15, Amer. Math. Soc., 1974,

3. J. Bona, R. Scott, Solutions of the K. d. V. equation in fractional order Sobolev spaces, Duke
Math. J. (to appear).

4. 1. Bona, R. S. Smith, The initial value problem for the Korteweg-de Vries equation, Philos.
Trans. Roy. Soc. London 278 (1975), 555-604.

5. Dushane, Generalizations of the Korteweg—de Vries equation, Proc. Symp. in Pure Math. 23
(1971).

6. T. Kato, Quasilinear equations of evolution, with applications to partial differential equations,
in Spectral theory and differential equations: Lecture Notes in Mathematics, Vol. 448, Springer-Verlag,
1974.

7. T. Kato, The Cauchy problem for quasilinear symmetric hyperbolic equations (to appear).

8. P. D. Lax, Periodic solutions of the K. d. V. equations, Comm. Pure Appl. Math. 28 (1975),
141-188.

9. J. C. Saut, Applications de [I’interpolation non linéaire G des problémes d’évolution non
linéaires, J. Math. Pures Appl. 9 (Sér. 54) (1974), 27-52.

10 J. C. Saut, Sur certaines généralisations de I’équation de Korteweg-de Vries, C. R. Acad. Sc.
Paris 280 (1975), 653-656.

11. W. A. Strauss, On the regularity of functions with values in various Banach spaces, Pacific J.
Math. 19 (1966), 543-551.

12. L. Tartar, Interpolation non linéaire et régularité, J. Functional Analysis 9 (1972), 469-489.

13. R. Temam, Sur un probléme non linéaire, J. Math. Pures Appl. 48 (1969), 159-172.

14. R. Temam, Proceedings on a Conference on Mathematical Problems in Turbulence: Lecture
Notes in Mathematics, Springer-Verlag (to appear).

15. M. Tsutsumi, T. Mukasa, Parabolic regularizations for the generalized Korteweg—de Vries
equation, Funkcial. Ekvac. 14 (1971), 89-110.

U. E. R. bE MATHEMATIQUES
UNIVERSITE DE PARris VII
PARrIs, FRANCE

AND

DEPARTEMENT MATHEMATIQUES
UNIVERSITE DE PARIS-SUD
ORrsAY, FRANCE



