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REMARKS ON THE KORTEWEG-DE VRIES 
EQUATION 

BY 

J. C. SAUT AND R. TEMAM 

ABSTRACT 

We show for the Korteweg-de Vries equation an existence uniqueness theorem 
in Sobolev spaces of arbitrary fractional order s _-> 2, provided the initial data is 
given in the same space. 

Introduction 

Our aim is to present a remark on the existence and uniqueness of solutions of 
two initial value problems associated with the Korteweg-de Vries (K. d. V.) 
equation (see for instance [8]): the Cauchy problem and the initial value problem 

with periodic boundary conditions, i.e., (0.1), (0.2) or (0.2'), (0.3): 

(0.1) au a/~ c~3~ 
a - ~ + U - ~ x + a - ~ x 3  =0, x E R ,  t > 0  ( a#0) ,  

(0.2) a ku ~ ( x ,  t)~o, Ix I -~ + ~ ,  k =0,. . . ,  

(0.2') OkU (x + 1, t)  = aku " ax r o--U tx, t), k = 0 , . . . ,  

(0.3) u (x, 0) = uo(x). 

The existence of solutions of these problems in Sobolev spaces of order 1 or 2 

was established in [13] using a technique of parabolic regularization, the 

equation (0.1) being approximated by 

(0.4) au~ OU e O3U~ -]- O4U~e ~- 0 (1~ > 0). 
O--t + u~-axx + a ax ~ e Ox 4 

The existence of solutions in all Sobolev spaces of integer order was established 

in [15], [5] (using again the parabolic regularization) and in [4] using a differenl 
technique. 
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Our purpose here is to complete these results by showing the existence of 

solutions in all Sobolev spaces of order s _-> 2, where s is not necessarily an 
integer. A non-optimal result of this type was previously established by the first 

author in [9] and while this paper was completed a result similar to ours was 

announced to the authors by J. Bona who uses a technique completely different 

from ours ([3]). 
Section 1 develops a technical inequality. Section 2.1 contains the main result 

and Section 2.2 gives a few remarks. 

1. An inequality 

Let H'(R)  denote the real Sobolev space of order s (s E R, s => 0), defined for 

instance by Fourier transform 

(1.1) {u E L2(R), [~ 1~/2a ~ L2}, 

and which is a Hilbert space for the norm 

(1.2) [[ u [Is = _~ (1 + I ~ 12) s I a (~)[2 d~r 

Similarly, let H~(C) denote the real Sobolev space of order s (s E R, s => 0) on 

the unit length circle C; among many other definitions, H~(C) may be 

characterized as the space of real periodic functions 

+~ 
u(x)= ~, uk exp(2izrkx), (1.3) 

such that 

+~ } I/2 
(1.4) Y, (1 + k2) l.k 12 < 

The left-hand side of (1.4) is a Hilbert norm for H ' (C) ,  denoted also {1 u [Is. 

When no ambiguity is possible, and in order to treat simultaneously the two 

initial value problems mentioned, H '  will denote either HS(R) or H~(C). 
The Fourier transform of u will be written a or ~u. Let D = d/dx and let D s 

represent the fractional derivative of order s: 

(1.5) DSu = ~ - ~ ( l ~ l ~ - u ) ,  if u c H ' ( R ) ,  

(1.6) DSu = ~ u~ I k I~exp(2irrkx) if u E Hs(C), u of type (1.3). 

The next lemma will be useful. 
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LEMMA 1.1. Letu, v b e l o n g t o H S ( R ) o r H ~ ( C ) , s E R ,  s > l , y ~ R , y > l / 2 .  

Then 

(1.7) IIO'(uv)-uD'vllo<--c(v,s){llull, llvlb+ Ilu H~+,llv I1~ ,}. 

REMARK 1.1. 

i) T h e  inequal i ty  (1.7) is valid in higher dimensions ,  u,v ~ H ' ( R " )  or 

Hs(c" ) ,  prov ided  Y > n/2 (same proof) .  

ii) Inequal i ty  (1.7) is ra ther  easy using Leibni tz '  formula ,  when s is an integer.  

Similar  " f rac t ional  type Leibni tz  fo rmu la s "  are extensively used in [1]. 

PROOF OF LEMMA 1.1. 

1/ W e  start  with the case u, v E H ' (R) .  We have  

D~(uv)(~)  = ~l 'u~(~) 

and 

= _~ 1 ~ 1 ' ~ ( r 1 6 2  ', 

~/D~v(~)-__ I +~ _ _~ fi(~ ~ ' ) r~ ' l  s ~ (~ ' )d~ ' .  

The  lef t -hand side of (1.7) is the L 2 no rm of Y = D~(uv) - uD~v, or using 

Parseva l ' s  fo rmula  the L 2 no rm of I7, 

~(~)= f]~ (1r ! ~- I ~'13~(~ - ~'),~(~')d~'. 

It is easy to see that  

where  c(s) is a cons tant  depend ing  only on s;  whence  

1 17(~)1 ~ c(s)(Y,(~)+ Y2(~)) 

(1.8) 

where  

II 1711o ~ c(s)(ll Y, IIo§ II Y211o) 

I ~ - ~'Fsl a (~ - ~') I I ~ (~')1 d~', 
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Both functions Y,, Y2, are convolution products, and using the convolution 
inequalities we find 

I[ Y, I1,)--< II [ ~ ['1 ~ (~)[ [[o ff ,3 ILL,,.,, 

(1.9) II Y, II0--< II u Ilsll ~ [k'(.>, 

[[ v~llo --< II [~:U'[ ~(r [[oll [scl [ a(~)I Ik',,~ 

(1.10) II Y211o =< II ~ II,-, IIg ra~'a0 ~ I1~',,,>. 

It remains to estimate the norm II ~' ILL',,, in terms of a Sobolev norm of w. One 
has 

L 
and by Schwarz' inequality: 

(1.11) f ~ f  

where 

[~ , (~)1(1+ 1~12) ,'2 d~ 
(1 + ~:~),,2 

I v~(~)I ds c ~ c'(~,)ll w 11~ 

( [+~ de ~ ,,2 
c'(- , /)= -~ (t~7~2)~,] < +oo, if y > I / 2 .  

The proof is now completed, using (1.8)-(1.11) and recalling that II ?ll,,is equal 
to the left-hand side of (1.7). 

2/ In the case u, v E H s(C), the proof is a discrete version of the preceding 
one. 

We have 

D s (uv ) -  uD'v = ~ [m is _lllS)ukv~)exp(2iTrmx) . 
m = - ~  k 

The left-hand side of (1.7) is equal to Z, with 

Z2= E • ( I m p - I l l ' ) u , v , )  . 
m = - ~  k + l = m  

Since 

I I k + l l ' - [ l l * l ~ c ( s ) ( l l [ "  ' [k l+)k[" ) 

we majorize Z by c(s)(Z, + Z2), with 
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( 2) 
n l = - ~  k + l = r n  

Now, the discrete convolut ion inequality gives us 

Cg j i ,, ,,r 
and we comple te  the proof  as before,  observing that 

Y__, Iw~l -< - + k ~ )  �9 + k~)* I w~ r 
k =  ~ k k 

+ ~  

I w~ I ~ c ' (~)l l  w [[~ 

and c ' ( 7 ) <  + m if T > 1/2. 

2. Existence results 

2.1. The main result. 

THEOREM 2.1. Let s be any real number >= 2 and let uo be given in H ' ( R  

(resp. H" (C)). The initial value problem (0.1), (0.2) (resp. (0.2')), (0.3) possesses 

unique solution u, u E L=(0, T;  H ' ( R ) )  (resp. L=(0, T;  H '  (C)))  for any T > ( 

Moreover u is weakly continuous from [0, oo) with values in H ~ (R ) (resp. H ~ ( C)). 

PROOF. The  uniqueness which holds for any s > 3/2 is simple and w~ 

established in [12]. The weak continuity follows from u E L~(0, T;  H s) and 

result of W. A. Strauss [10]. For  the existence we use the parabolic  regularizat io 

as in [12]*: we consider  a parameter ,  e > 0, and a sequence  Uo~ ~ H s n qC| 

with 

u o ~ u o  in H s, as e % 0 .  

For  each e > 0 we consider  the initial value problem 

* The results of [13] which were established for the space periodic problem (0.1), (0.2'), (0. 
extend without modification to the Cauchy problem (0.1), (0.2), (0.3). For compactness argumenl 
we use the fact that the injection of Ha( - M, + M) into L~( - M, + M) is compact, VM. 
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(2.1) 3u~ § OU t- 03U~e § tO4U~ = 0 X ~ R, t > 0, 

(2.2) u, (x, 0) = u0~ (x), 

comple ted  with the boundary  condit ion (0.2) or (0.2'). 

It is well known that this problem possesses a unique smooth solution and it 

was shown in [13] that 

(2.3) u, remains bounded  in L~(0, T;  H2), as e N 0. 

Moreove r  u~ converges,  as e "~ 0, to the solution of the K.d.V. initial value 

problem (0.1), (0.2) (or (0.2')), (0.3). 

Now, it remains to show that 

(2.4) u, remains bounded  in L~(0, T;  HS), as e "a 0. 

For  that purpose,  we apply the opera to r  D ' on both sides of (2.1) and we take 

the L 2 scalar product  with DSu~ *. Observing that D = ,9/Ox and D s commute ,  we 

obtain 

1 d 
(2.5) 2 dt 11 O'u~ ]]~ + e 11 0 2 O ~ u, [[~ + (OS(u,Ou,:), O Sue) = 0 

(also (DSD3u~, D~u, )= 0). Now we apply lemma 1.1 and observe that 

[ (u~OO ~u,, O~u, ) J = �89 (Ou,D Su,, OSue ) [ ~ �89 Ou~ IIL~,,,,T:L~(,,,[[ O~u, [[~ 

_-< c([[ u,,[[=)[[ D'u,  [[o 2 

(cf. [13]). 

(2.6) I (O' (u ,  Ou~),O'u~)J <=2c(7, s)llu, [l~l[ u~ [[,+. I[ D'u~ I1o, 

for some Y > 1/2. We can take 3' = 1, and major ize  [1 u~ IIs by II u~ I1,, § II O ~u, Iio. 
Using (2.3) we obtain then: 

1 d 
(2.7) 2 dt [[ O ' u ,  IJg =< c" [[ O ~u~ IIo 2, 

where  c" is some constant  depending only on uo, a, s and T. The  result follows 

then from Gronwal l ' s  lemma. �9 

2.2. Other remarks. 

PROPOSITION 2.1 (A local exis tence-uniqueness  result). Let s be a real 

number 3/2 < s < 2, and let uo ~ HL Then there exists C ,  = C , (a ,  s), such that 

* The scalar product in L2(R) (or resp. L2([0, 1]-)) is denoted (u, v). 
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the initial value problem (0.1), (0.2) or (0.2'), (0.3) possesses a unique solution u 

weakly continuous from [0, T , )  into H ~, T ,  = (C ,  II Uoll~)-'. 

PROOF. We proceed as before using the regularized problem (2.1), (2.2). 

This time, since s < 2, instead of (2.3), we only infer from [13] that u~ remaim, 

in a bounded set of H ~ as e N 0. It remains to show that u remains in a bounded 

set of L~(0, To; H~), where T,,< T ,  ( C ,  to be explicit). 

We apply (2.6) with s = 3' + 1 and instead of (2.7) we obtain some inequality 

and by integration 

1 d 
2 dt l] D'u~ II~ <= c ,  [1D'u~ 112, 

[[D%(t)[[. = 1 -  C,tllD~uo~ Iio" 

The result follows. | 

REMARK 2.1. We do not know any global existence-uniqueness result in H 

3 /2<  s < 2. Beside Theorem 2.1 and Proposition 2.1, the known results c 

existence of weak solutions are ([13]): existence of a global solution u q 

L ~ ( O , T ; H ~ ) i f u o E H ' ; u n i q u e n e s s o f a s o l u t i o n u E L = ( O , T ; H S ) , s >  3/2. I 

Under  the assumptions of Theorem 2.1, let us now consider the mapping sO, 

(2.8) u (0)  = u,, ~ u ( t )  

which is well defined from H" into itself (s >_- 2). This mapping is easily seen to I: 

continuous and furthermore: 

PROPOSITION 2.2. M, is locally H61der continuous with exponent 1/2, fro 

H ~1/2 into H ' ( s  >= 2). More precisely, there exists a continuous [unction ~o fro 

R+ x R+ into R§ such that 

(2.9) 11 u(t ) -  v(t) ] l ,  --< ~p (]l uoJl ~+~,]l Voll 4JJ u o -  Vo II'&,0. 

PROOF. I t  suffices to prove (2.9) for uo~, vo~, u~(t), v~(t), w i th  a functi( 
independent of e(~p may depend on t). To do this, we set Wo~ = U o ~ - v  

w~ = u~ - v~ ; w~ satisfies the equation:. 

_ _  O4 w~ Ow~ Ov~ (2.10) ,gw~ + O3w~ + e - 
Ot a Ox ~ Ox" u~-~x - w~-~ .  

Applying D ~ to each member of (2.10) and taking the L2-scalar product wi 

D'w,,  we get 
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1/2 d [[DSw, IIo~+ ~ [ID,+=w~ Iio2- - - (D'(u~Dw,) ,D'w~) 

(2.11) 

- (D'(w,Dv~), D'w~). 

Due to (1.7) the first term in the right-hand side of (2.11) is equal to 

- (u~D'+' w,, D ~w~ ), plus a remainder which is bounded by ((1.7) with ~, = 1): 

c(1, s)(llu~ Lll Dw~ I1,+ Ilu~ II~lIDw~ I[, ,)[[ D~w~ II,, 

Cx(S)] [ U LII w~ 11,2 

By integration by parts, the term -(u,D~+~w~,D~w,) 
(1/2) (Du~D~w,, D'w,), and this is bounded by 

cz II u~ I1= II D ~w, [[~. 

is equal to 

Let us now majorize the second term in the right member of (2.1l). Again, 

because of (1.7), this term is equal to -(w,DS+'v,,  D~w,) plus another expres- 

sion bounded by 

c (L s ) (11 w~ L II v~ I1~ + II w~ I1= 11 v~ II,)II D 'w~ Iio ---- c~(s)ll v~ 11~ II w~ L ~. 

Using Parseval's formula, we see that the term (w~D~+~v~, D'w~) is equal to 

(D'+l/%,, Dm(w~D~w,)) and this term is bounded in absolute value by 

II v~ 11,+,,2 II w,O'w~ 11,/=. 

interpolation for the mapping g ~ w~g, w~ E H', we obtain the By linear 

inequality: 

Finally 

II w~g H,/2 <= c4 [I w~ [I, H g ]t,/2, Vg @ Hm; 

[[ w~D Sw~ lira <= c41] w~ II, II D'w~ II,n. 

I(w~DS+'v,,D~w,)l<=c4[[v~ [I,+m(ll", Ils+,/2+ IIv, II,+ln)[[ w~ ,. 

Now, a more precise form of (2.3) or (2.4) is that 

(2.12) sup 1[ u~(t)llz ~ ~o(ll Uo~ 112) 

(2.13) sup II u~(t)lls~ ~,(ll Uo~ II,) 
O ~ t ~ T  
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where q~o, qh, '"  ", are cont inuous which may depend  on T but  not on e (similar 

inequalities hold for v~). It is not difficult also to show that 

(see for instance [9]). 

Using all these majora t ions  of the r ight-hand side of (2.11), we find now 

r . .  II, + II ,,e 113 II we I1~ 

+ c6(11 u~ 11.+,,2 + II ,,~ I1-,,=) 2 II we II, 

--< ,r .o, .+.=11 v,,, ll.+,,2)(ll Woe Iio+ II w. I1•+ II D 'w~  IIg) 

=< (with (2.14)) 

<= ~,(11 .,,~ I1-.= II vo~ [I.+,,=) (ll Wo~ I1o + II woe I1~ + II D'w, I[~)- 

Using Gronwal l ' s  lemma,  we conclude that 

II O 'we (t)112 --< ~ (  II .o I1-,,=, II Vo I1,+,,~) (11 Wo~ I[0 + II w0~ I1~ + II D'wo,  II~). 

The  proof  is now completed.  

REMARK 2.2. 

i) We may,  without  any difficulty, consider  a non-zero  r ight-hand side in 

(0, 1), f E L~(O, T; H~). The  results are valid as well for the backward prob lem 

- T <  t < 0  with initial condit ion at t = 0: we have just to replace e by - e. 

ii) It is easily checked with our  results that the K. d. V. equat ion does not  

possess any regularizing nor  any deregularizing effect in the spaces H ' :  

(2.15) If uoEH',(s>=2) and Uoff. H'+~,Ve>O, then the same 

is t rue for u(t), Vt > 0 ;  

(2.16) If Uo E H ' - ' ,  e > 0 sufficiently small (s > 2) and u0 ff H ", then 

the same is t rue for u (t), Vt > 0. 

For  proving (2.15), observe that u(t)E H ~, and if u(t)E H ~+~, e > 0 ,  then by 

solving the backward K. d. V. equat ion (see Remark  2.2 (i)), we should obtain 

u0 = u ( 0 ) E  H '+~. The  same proof  for  (2.16) holds. 

iii) We note  also that 

(2.17) If uoEH ~, uoff_H ~, then the same is t rue for u(t), Vt>O. 

(2.14) sup 11 w~ (t)1[~ ~ q~2(]l uoe 112, [I vo~ 112) 1[ Woe II~ 
()<t--<T 

d 
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Indeed ,  if u (to) E H 2 for some  to > 0, then  by solving the b a c k w a r d  p r o b l e m  

we find a so lu t ion  ti E L~(0, t0; H 2) of the  K.d .V.  p r o b l e m .  The  un iqueness  

t h e o r e m  impl ies  a = u, ~ ( 0 ) =  Uo~ H 2, in con t rad ic t ion  to the  a s sumpt ion .  

iv) The  same t echn ique  can be used for  many  o t h e r  equa t ions ;  g e n e r a l i z e d - -  

in va r ious  w a y s - - K ,  d. V. equa t ions  ([2], [10]), E u l e r  equa t ions  (see [14]), 

f i r s t -o rder  quas i l i nea r  hype rbo l i c  equa t ions .  The  t echn ique  appl ies  also to the 

S i n e - G o r d o n  equa t ion ,  but  in this case the  resul t  s imi lar  to T h e o r e m  2.1 was 

a l r eady  o b t a i n e d  by J. C. Saut  [9] using the non- l inea r  i n t e rpo la t i on  [12]. 
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